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Abstract

This paper focuses on exploring how learn-
ing and development can be structured in syn-
thetic (robot) systems. We present a devel-
opmental assembler for constructing reusable
and temporally extended actions in a se-
quence. The discussion adopts the traditions
of dynamic pattern theory in which behavior
is an artifact of coupled dynamical systems
with a number of controllable degrees of free-
dom. In our model, the events that delineate
control decisions are derived from the pattern
of (dis)equilibria on a working subset of sen-
sorimotor policies. We show how this archi-
tecture can be used to accomplish sequential
knowledge gathering and representation tasks
and provide examples of the kind of devel-
opmental milestones that this approach has
already produced in our lab.

1. Introduction

Human infants display a tremendous assortment of
time-varying structure in their physiological and neu-
rological responses to the world. We propose that
kinematic, dynamic, and neurological properties of a
developing infant are exploited to simplify and struc-
ture learning in the context of an on-going interac-
tion with the world. Developmental processes con-
struct increasingly complex mental representations
from a sequence of tractable incremental learning
tasks. Our goal is to provide computational mech-
anisms for modeling these aspects of developmental
in order to program complex robot systems.

By Piaget’s account, the sensorimotor stage in
human infants lasts roughly twenty four months
(Piaget, 1952, Piaget, 1954).  In the first four
months, reflexive responses begin to organize into
coherent motor strategies, sensory modalities are
coordinated and attentional mechanisms begin to
emerge. From four to six months, primary circular
reactions are practiced until the infant finds it possi-
ble to prolong certain kinds of interactions. Between
six and eighteen months, these primary circular re-
actions lead to behavioral models of the world that

apply to “classes” of interactions and depend less on
specific instances. This paper explores the possibil-
ity that a commitment to such figurative schemata
explains some qualitative aspects of developmental
processes and leads to the efficient acquisition of ab-
stract, hierarchical control knowledge that can be
used to similar advantage in the organization of robot
behavior.

Two central hypotheses underlie our research:

e rich classes of behavior can be expressed in
terms of relatively few, schematic structures
that are grounded in physical activity that we
call physical schemata, and

e physical schemata are the sensorimotor foun-
dation for re-usable control knowledge.

The idea of physical schemata is not new in the be-
havioral sciences (Johnson, 1987, Lakoff, 1984,
Lakoff and Johnson, 1980, Mandler, 1988,
Mandler, 1992, Gibbs and Colston, 1995), but we
are proposing computational mechanisms whereby a
robot can acquire hierarchies of physical schemata,
propose generalizations of such schema, and test
these propositions. We suggest that cumulative
cognitive models both define and explain a robot’s
relationship to multiple goals in a non-stationary
environment.

One implication of this hypothesis is that once sta-
ble interactions with the world are discovered and
captured as physical schemata, an agent may predict
other instances of this type of interaction. This is
one form of metaphorical extension (Johnson, 1987),
whereby physical schemata are extended to other
physical examples of that phenomena. We will intro-
duce the notion of symmetries in behavioral descrip-
tions that support the rapid adaptation of a schema
to specific run-time contexts. Homomorphisms of
physical schema provide a means of learning (or
being taught) under what conditions one may ex-
plore using parameterized schema rather than learn-
ing from scratch. Thus, it can help us avoid brute
force, unstructured stochastic search in related con-
texts and perhaps as a consequence, use development
in part to defeat the curse of dimensionality.



2. Structure for Learning and Devel-
opment

An infant is an integrated, adaptive system - he/she
is a complex and flexible “plant” embedded in a fluid
and open environment. As a control problem, this is
truly daunting. But, we advocate a relatively opti-
mistic position - that traditions in robotics, control
theory, Al, and learning are adequate computational
accounts of some critical aspects of developing hu-
man infants. An important lesson to learn from de-
velopment is that embedded sensorimotor processes
can compromise expressive power temporarily to re-
duce complexity. Managing this tradeoff effectively
can lead to computational tractability in the short
term and growth toward optimal behavior in the long
term.

2.1 Kinematic, Dynamic, and Matura-

tional Structure

Traditions in machine design have often applied
tools for predicting kinematic function and dynamic
effects in the motion of an articulated structure.
Roboticists, in turn, have often used these tools
to fashion mechanisms with appropriate kinematic
and dynamic properties. However, our ability to
address open tasks in unstructured environments
remains ad hoc and limited to the ingenuity and
foresight of the designer. For instance, Salisbury
(Salisbury, 1982) designed robot hands so as to be
kinematically isotropic in the region where individ-
ual fingers may collectively manipulate an object. In
an open domain, when object geometry and task are
unspecified, this heuristic places all three fingers near
isotropic configurations in the neighborhood of com-
monly used hand postures.

The value of intrinsic dynamics in robot de-
sign is perhaps most convincingly demonstrated in
the development of passive bipedal walkers. Re-
searchers have built passive mechanisms based on
human morphology that rely almost entirely on the
passive dynamics of the mechanism (McGeer, 1992,
McGeer, 1993).

In humans, kinematic properties of the skeleton
and the dynamics of the musculature strongly influ-
ence the way in which development proceeds. For
instance, Bernstein seminal work observed periods
of kinematic engagement followed by the formation
of strategies to exploit non-muscular (inertial) forces
during movement(Bernstein, 1967).

In addition to a “kinematic-then-dynamic” strat-
egy, the dimensionality of the initial kinematic
problem can be addressed in a staged manner
as well.  Berthier, Clifton, McCall, and Robin
(Berthier et al., 1999) conducted longitudinal stud-
ies of infants (6 - 30 weeks) during the onset of
visually- and acoustically-guided reaching tasks. Ini-

tially, reaching movements appear to be focused pri-
marily in the shoulder and torso. Large proximal
degrees-of-freedom are engaged first while the intrin-
sic muscles of the forearm and hand stiffened via co-
contraction. Researchers (Kuypers, 1981) propose
that patterns of maturation in the corticospinal tract
are responsible for this kind of structured learning.

Bril and Breniére (Bril and Breniere, 1992) make
similar observations in the development of bipedal
gaits. In the first 5 months, infants integrate postural
constraints into gait generation. A coordinated gait
can be elicited immediately after birth in the form of
the gait reflex (Thelen and Smith, 1994). However,
the reflex is segmental and not integrated with other
skills required for upright locomotion. During an im-
portant developmental period, a conjunction of influ-
ences inhibits or suppresses the gait reflex in order
to permit the stiff-legged (or distal co-contracted)
infant to focus on postural stability. These walking
strategies are focused primarily in the hip, with rela-
tively wide stance. Once muscle strength is adequate
and policies for balance and equilibrium are estab-
lished, then distal degrees of freedom are enlisted. A
co-contraction heuristic appears to be a common mo-
tor policy during the acquisition of new motor skills
even in adults (notice how adults approach skiing or
ice skating as novices).

2.2  Reflexes and Composability

The CNS is organized, not in terms of
anatomic segments, but according to movement
patterns(Aronson, 1981). The basic form of pack-
aged movement pattern is the reflex. A reflex can
reside at many levels of the central and peripheral
nervous system ranging from involuntary responses
to trigger stimuli, i.e. muscle stretch, the so-called
simple segmental reflexes mediated in the spinal
cord and brain stem, postural reflexes mediated
in the cerebellum, and even cortically mediated
visual reflex. These processes contribute to the
organization of behavior at the most basic levels -
they constitute a kind of sensorimotor instruction
set for the developing organism. The so-called devel-
opmental reflexes, whose onset and persistence have
been meticulously documented, serve ontogenetic
developmental goals and are not elicited in normal
adults. In addition to providing basic sensorimotor
function, it is generally understood that they
exercise the musculature and serve to increase the
exposure of learning and developmental processes
to conditions underlying important developmental
milestones.

Composition of such sensorimotor systems gives
rise to more comprehensive behavior, For example,
in (Mussa-Ivaldi et al., 1991) it is observed that in-
dividual force fields are superimposed in the frog’s
leg/spine that yield continuously controllable leg po-



sition from a discrete set of composable force fields.
Moreover, in humans it is generally understood that
certain motor patterns repeat in a regular pattern.
Some, like walking, swimming, or flying, are the
result of specialized ensembles of cells in the CNS
called Central Pattern Generators (CPGs). Wolff
(Wolff, 1991) suggests methods for composing oscil-
lators in order to address novel initial conditions and
contexts. For example, infant breathing rhythms
vary between 30-40 cycles per minute in a rough
balanced inhale/exhale episodes. When an infant
is startled a repeatable change in the amplitude
and frequency can be observed that disappears 3-
4 breathing cycles after the stimulation disappears.
Biological rhythms can thus be perturbed by super-
imposing other such rhythms and can return spon-
taneously from neighboring trajectories to the same
“attractor basin” when the perturbation is removed
(Wolff, 1991). Similar ideas underlie recent work by
Williamson (Williamson, 1999) who demonstrated
oscillators that couple across kinematic structures.

3. A Developmental Assembler

The epigenetic developmental theory proposes that
primitive reflexes, expressed as neuro-anatomical
structures, are the basis building blocks of behav-
ior. In this model, complex behavior is constructed
from combinations of primitive reflexes in response
to reinforcement. Ontogenetic developmental the-
ory suggests that coordinated behavior appears and
subsequently disappears in order to serve some vital
developmental function. After these developmental
roles are fulfilled, the neural substrate of the behav-
ior is eliminated as well - it does not grow or other-
wise change into a mature form of the reflex. This
implies that some types of behavior do not have an
antecedent in a reflexive repertoire.

We contend that reflexes serve as an epigenetic
computational basis and that some are short-lived
and serve an ontogenetic knowledge formation role.
For example, the stepping reflex is likely the an-
tecedent of walking, but no such simple reflexive pre-
cursor has been identified for reaching tasks. The
latter being a discrete task, requiring multiple co-
ordinated reflexes (Asymmetric Tonic Neck Reflex
(ATNR), palmar grasp reflex, distal-curl reflex, Moro
(clasp) reflex, startle, etc.). To understand develop-
mental processes, therefore, we need to understand
how knowledge and structure interact over time to
acquire skill in a manner that is robust with re-
spect to variation in the world. Furthermore, to im-
plement developmental processes there must exist a
generative basis for behavior that coordinates sim-
ple reflex to serve both epigenetic and ontogenetic
developmental goals, there must be an internal rep-
resentation for control knowledge, and a principled
framework for reusing that knowledge in novel cir-

cumstances.

Figure 1 is a sketch of a computational framework
that addresses both learning and development and
that incorporates some of the principles of structure
discussed earlier. One dimension of development is
viewed as a scheduling problem in which a strat-
egy for engaging sensor, motor and computational
resources is sought to satisfy a task specification in-
crementally. FEach stage of this process is charac-
terized by developmental parameters; the tasks, the
participating control objectives, the sensor and effec-
tor resources allocated, and axioms that define legal
combinations of behavior. The overall objective is
to progress through a sequence of such designs to
assemble new behavior, which in turn, becomes a
precursor for successive stages of development.

The rest of Section 3. will introduce the main parts
of the architecture in Figure 1. After this introduc-
tion, we will review a developmental sequence re-
alized on platforms in our lab and speculate about
what’s next.

3.1 Action

Our framework is designed to learn a hierar-
chy of actions by composing more primitive ac-
tions. The Control-Basis (Huber et al., 1996,
Coelho and Grupen, 1997) in Figure 1 is designed to
provide a combinatoric basis for control that sup-
ports the representation of declarative and procedu-
ral control knowledge. The most primitive actions
are closed-loop control processes constructed by com-
bining an artificial potential, ¢ € ®, with a subset
of the available “sensors,” s € €, and “effectors,”
e € Q.. The effect of action plays out over an ex-
tended period of time as a pattern of system control
inputs act to descend the potential function using the
available resources. The “control basis” terminol-
ogy highlights the fact that there are many possible
sensor /effector assignments for each type of artificial
potential.

Modeling primitive actions as controllers has sev-
eral important related consequences:

e actions are asymptotically stable and tend to-
ward fixed points that represent locally opti-
mal conditions with respect to the objective
function;

e controllers suppress local perturbations by
virtue of their closed-loop structure;

e the dynamics of the controlled system pro-
vides a variety of useful discrete abstractions
of the underlying continuous state space; and

e time is metered by discrete observable events
in the transient response of the controlled sys-
tem rather than by an arbitrary continuous
clock.

Since dynamics reveal events that depend on the op-
erational context, hierarchies of actors are likewise
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Figure 1: Native Structure, Learning, and Behavior in an Integrated Developmental Assembler.

hierarchies of special purpose observers.

Artificial potentials also share critical properties
with value functions employed by the machine learn-
ing community to make optimal control decisions. In
particular, value functions preserve all the properties
of admissible controllers, leading to naturally hierar-
chical organizations of controllers defined in terms
of other controllers. These hierarchies express ob-
jectives at many temporal scales so that an agent
can adjust its level of discourse about activities by
ascending and descending the hierarchy. Moreover,
when a robot receives procedural instruction from
another agent (human), it can estimate the purpose
of these instructions in light of its own hierarchy of
objectives, as well.

This perspective is inspired by some recent trends
in robotics and the relationship of these ideas to epi-
genetic theories of development. In 1989, Koditschek
et. al. argued that robot designers should focus
on “finding controllers” with inherent dynamical
properties that produce valuable artifacts in the
world rather than computing the artifacts directly
(Rimon and Koditschek, 1989).  Assertions about
the stability of the coupled system have been used
to form the state space for such systems as in
the attractor landscape proposed by Huber et. al.
(Huber and Grupen, 1997) or the limit cycles pro-
posed by Schaal et. al. (Schaal and Sternad, 1998).

3.2 State and System Modeling

Consider the case when a dexterous robot must grasp
an object. The dominant traditions in grasp plan-

ning require that the complete geometry of the ob-
ject be determined a priori so that a planner can
enumerate all possible grasps and sort them into
an order that reflects their relative quality. At this
point, the robot will execute the solution at the top
of the list. In contrast, the control basis approach
advocates searching for control configurations that
produce high quality equilibria. This is an on-line
process that does not require a complete object ge-
ometry.

The Dynamic Modeling component of Fig-
ure 1 is responsible for modeling the signature dy-
namics of the controlled process in many opera-
tional contexts. For example, Figure 2 plots the
potential (a candidate Lyapunov function) against
the time rate of change of the potential for a
grasp controller that descends toward wrench closure
grasp configurations in a variety of grasp contexts
(Coelho and Grupen, 1997). The controller has mul-
tiple equilibria because there are typically many ob-
jects that can be grasped and many different grasp
solutions for any one object. When policy, 7;, is en-
gaged, the pattern of membership in these empirical
models changes over time in a manner that iden-
tifies the current control context. This perspective
has roots in methods like Hidden Markov Modeling
(HMM) where categories can be recognized by pars-
ing a sequence of events according to a transition
model. Likewise, Takens’s theorem describes how
patterns in the behavior of nonlinear dynamical sys-
tems are related to missing or hidden state variables.
In our architecture, closed-loop controllers produce
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namic models serves to identify a discrete state for the
control policy.

mechanical artifacts and an event stream that dis-
tinguishes certain control contexts.

As discussed previously, controllers are distin-
guished by their respective sensory and motor re-
source allocations. The goal for controller ¢; is to
achieve an equilibrium state where its value function
is at an extremum. We want to determine whether
an estimate of the run-time context can be extracted
from the transient response of ¢;. We define a predi-
cate vector ¢; that describes the status of ¢; by iden-
tifying the set of empirical models M;; that are con-
sistent with a series of run-time observations. For
instance, an element of §; can represent convergence
- asserting that ¢; has reached equilibrium. Under
these circumstances, a particular stance of a walk-
ing machine is stable, or the robot arm has achieved
a reference configuration. Other elements of ¢; as-
sert that run-time observations match other M;;. In
(Coelho, 2001), we found that a small set of such
models can be used to recover a wide variety of in-
teresting control contexts.

In general, an agent’s predicate state ¢ reflects the
current status of several active controllers. We de-
note by p(¢;;|#i(¢)) the probability that model M;;

explains the observed time history when control ¢; is
engaged in state ¢. The system identification task is
to learn p(g;;|¢:(q)) for all predicate states ¢. These
probabilities constitute a physical model of the world
couched in the agent’s interaction with it. The re-
sulting transition model describes the dynamics of
information gathering as well as grasp formation un-
der policy ;.

3.3  Developmental Schedule

The set of primitive actions that may be expressed,
O x 2% x 2% is quite large. This is good from
the perspective of expressive power but bad from the
standpoint of computational complexity and policy
formation. So while the system may be capable of
associating novel combinations of features in the sen-
sor data with unorthodoxed combinations of effectors
to accomplish a specific stimulus-response process, it
is not clear that these unlikely actions will ever be
explored by purely randomized search. Therefore,
several aspects of developmental structure have been
implemented in the Developmental Schedule compo-
nent of Figure 1 to bias exploration toward computa-
tionally tractable subsets of the action and state sets
in order to accumulate critical control knowledge se-
quentially.

The resource model expresses constraints on the
sensors, effectors, and potential functions/policies
that may be considered when generating actions. It
is this kind of supervision that underlies the proxi-
mal to distal motor engagement during the onset of
reaching movements and bipedalism (Section 2.).

The sequence of tasks that the robot addresses
can clearly influence the performance of the develop-
ing system. We will present and example in which
the right task sequence has a significant impact on
learning performance and the asymptotic quality of
the policies acquired in Section 4.3.

The Discrete Event Dynamic Systems
(DEDS) specification provides the finest grain con-
trol over the combinatorics of exploration. It con-
strains the range of interactions permitted with the
environment to those that:

e satisfy real-time computing constraints;

e guarantee safety specifications; and

e are consistent with kinematic and dynamic

limitations.

In this formalism (Ozveren and Willsky, 1990,
Ramadge and Wonham, 1989, Sobh et al., 1994),
the state of the underlying system is assumed to
evolve with the occurrence of a set of discrete
events, some subset of which are controllable. There
many tools for analyzing and interacting with such
control processes. One may prove, for instance, that
certain states can’t occur. These tools also provide
a means of investigating the role of constraints
as “bootstraps” for a learning system. Such a



mechanism influences the occurrence of controllable
events such that no prohibited or uncontrollable
event can violate functional constraints on the
system. A complete supervisor takes the form of
a nondeterministic finite state automaton in which
states are functional assertions about patterns of
membership in the empirical dynamic models that
must be either preserved or excluded and transitions
represent possible concurrent control situations.

Logical conditions on the predicate vector, influ-
ence the range of control options that the system
may explore. In a similar fashion, this DEDS super-
visor allows the introduction of additional domain
knowledge and preferences into the control architec-
ture. Doing so can dramatically reduce the num-
ber of control alternatives considered in the learning
phase and can be used to accelerate learning or as a
shaping mechanism.

3.4  Reinforcement Learning

Dynamic programming-based Reinforcement Learn-
ing (RL) (Barto et al., 1993) is a natural paradigm
for programming these systems since RL does not
require external supervision and encodes policies as
sequences of concurrent control situations with asso-
ciated rewards. In general, these rewards can be rare,
occurring infrequently or after extended sequences of
actions. In the framework presented here, RL is used
to solve the temporal credit assignment problem for
an optimal policy with respect to a given reinforcer.

One of the major drawbacks of reinforcement
learning methods is the large number of trials they
require in order to first find and then improve a
given policy. A second problem in exploration-based
learning techniques is that they have to take ran-
dom actions in order to discover better control poli-
cies. This can lead to catastrophic failures which
are not acceptable for an autonomous system. The
mechanisms outlined in Section 3.3 are designed to
address these shortcomings and lead to high perfor-
mance learning systems.

As useful policies for important tasks are con-
structed, they are incorporated into the control ba-
sis. Therefore, subsequent policies may incorporate
temporally extended actions if there is added value
to reasoning about the problem at these time scales.
This approach is formalized in the Semi-Markov De-
cision Processes (SMDPs) as a recursive framework
for hierarchical control that leads potentially to large
expressive power depending on the sensors, motors,
the native value functions, and the developmental
sequence applied to the agent.

4. Developmental Milestones

In (Fiorentino, 1981), a coarse description of the de-
velopmental process during the first year of an in-
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Figure 3: Superimposing a developmental sequence ob-
served in human infants with some of the Schemata de-
veloped on robotic platforms.

fant’s life is presented. The discussion focuses on
tasks and reflexes that facilitate motor control and
perhaps the acquisition of control knowledge. A se-
quence of postural stability tasks are identified that
start with the infant acquiring the ability to con-
trol its head. In this kind of task, information is
assumed to be heavily weighted toward vestibular,
proprioceptive, and (later) vision organs. Figure 3
illustrates one such early sequence in which a child
learns to raise its head off the floor (like a mast) into
a configuration where the axis of the head is aligned
with gravity. This occurs during a period of learning
about and strengthening muscles in the neck and the
back that are as yet weak in extension. The infant
uses optical- and labyrinthine-righting reflexes that
are not present at birth but develop instead over the
first few weeks. These mechanisms, from the prone
position, interact with the symmetric tonic neck re-
flex to develop a guadrupedal position. A purely
proprioceptive reflex called the “body-on-head” re-
flex helps to rotate the trunk in response to a head
angle. The infant thus acquires policies for rotat-
ing the trunk and head about the body axis to pan
the head and eyes. All of this behavior leads to-
ward stabilizing the infant in sitting and later stand-
ing postures. The author describes a set of reflexes,
their onset and persistence, that when elicited build
range of motion, strength, and compliance or that
cause important interactions (hand-eye interactions,
for instance).



With the foundations of the previous sections, we
will conclude by extrapolating from results generated
over the past decade in the Laboratory for Percep-
tual Robotics at UMass on several experimental plat-
forms to speculate about a staged programming pro-
tocol for dexterous robots. The behavior discussed
is superimposed in capitals on Figure 3 in order to
emphasize the sequential development of sensorimo-
tor programming directed by tasks, resources, and
pre-requisite control knowledge.

4.1 LOCALIZE Schemata

Two close relatives in the control basis were config-
ured that employ the same artificial potential and
effector resources. The only difference is the source
of the position reference. In Figure 4, SACCADE, ¢,
accepts a reference heading in space and directs the
sensor’s field-of-view to that heading. FOVEATE, ¢y,
is similar except that it accepts heading references
determined by the sensor’s signal. The SACCADE-
FOVEATE schema has been applied to scanning in-
frared sensors, distributed sensor arrays, acoustic
sensors, binocular heads, and panoramic visual sen-
sors. The state in the nodes of Figure 4 is just the

context
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Figure 4: SACCADE-FOVEATE - A Physical Schema for
Detecting and Tracking a Feature.

convergence status of ¢, and ¢¢. That is, if ¢, is con-
verged and ¢y is not, then the state of the SACCADE-
FOVEATE schema is 10. An X in the state repre-
sentation represents a “don’t care” or “don’t know”
condition.

The SACCADE-FOVEATE schema begins by direct-
ing a sensor r € R to saccade to an interesting region
of space. A transition from state XX back to state
X X is presumably an error in the motor component
for the sensor. If the sensor achieves state 1.X, then
the closed-loop process ¢ is engaged whose goal it

is to bring the centroid of the response of a local
feature detector to the center or fovea of sensor r’s
image plane. A transition from 1X to X0 via con-
troller ¢ ¢ can signify that the expected target feature
is not present. If the target feature is detected and
foveated, then the sensor achieves state X 1 where the
feature is actively tracked. As long as the actions of
the foveation controller preserve this state, a heading
to the feature is reported. If a transition from X1 to
X0 is observed under action ¢, then a target feature
may have eluded the sensor. This rich semantic de-
scription of the behavior is derived exclusively from
the transition dynamics in the SACCADE-FOVEATE
schema.

When at least two instances of the SACCADE-
FOVEATE schema are simultaneously in state X1,
and they are driven by features derived from the
same subject, then there is sufficient information
for triangulating the subject. Figure 5 illustrates a
schema that manages a multiple SACCADE-FOVEATE
schemata hierarchically. The LOCALIZE schema re-
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Figure 5: LOCALIZE - A Physical Schema for localizing
features in space.

ceives event streams generated by multiple subor-
dinate SACCADE-FOVEATE schemata under its man-
agement and produces a report regarding the loca-
tion of the subject. If the subject is human, then
they may at times be moving, stationary, speaking
or quiet, possessing biometric features that are ro-
bust over time and some that change (like clothing).
The LOCALIZE schema must configure a process that
is adequate for this purpose. Each unique resource
allocation r1, 79 € R produces hypotheses of varying
quality depending on the context of the localization
query.

We anticipate that the LOCALIZE resource man-
ager must learn when and how to pass the tracking
task onto other sensors. In fact, the hand-off might
exploit the resource pool by instantiating redundant
tracking modes and using their feedback to refine
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Figure 6: A hierarchical controller developed in stages for
grasping unknown objects from the set of convex poly-
topes.

the control context. This context can include visual,
acoustic, and thermal signatures of the subject, but
it can also entail, perhaps, partially “recognizing”
the subject. We’re asking alot of this resource man-
ager - but we’re asking these hard questions in a very
specific behavioral context.

4.2 GRASP Schemata

In (Coelho and Grupen, 1997), we proposed a closed
loop grasp controller that generates fixed points in
contact configuration space based solely on tactile
feedback. The C* controller is actually a combina-
tion of two artificial potentials derived from contact
positions and normals and assuming uniform unit
magnitude contact forces. The first potential mea-
sures a quadratic force residual and the second mea-
sures a quadratic moment residual. We showed that
a descent on the force residual surface to convergence
followed by descent on the moment residual surface
produces optimal wrench closure grasps on regular,
convex geometries. This policy is captured in the
transition diagram in the middle of Figure 6. In sub-
sequent work (Grupen et al., 1992, Coelho, 2001),
the “regular/convex” grasp policy was extended hier-
archically to account for varying numbers of contact
resources and to tolerate bounded irregularity within
the class of convex objects. For example, given 3 fin-
gers and the performance metric employed, the op-

timal number of contacts for grasping a triangle is
3, for a rectangle 2 contacts are optimal, and for the
cylinder, both 2 and 3 contacts are optimal. More-
over, grasp configurations that are evolving toward
suboptimal equilibria can be shunted toward optimal
fixed points by descending alternate potential fields.

We presented a variety of irregular triangular,
cylindrical, and rectangular prisms to the system.
A total of 61 models (like those illustrated in Fig-
ure 2) of the behavior of C* were generated for these
objects. The pattern of membership in these mod-
els constitute the state of a Markov Decision Process
(MDP). A control decision to reallocate resources, r,
is considered whenever membership in these models
changes during grasp formation. There are four dis-
tinct such parameterizations involving sets of fingers
-[123], [12], [13], and, [2 3].

One hundred trials were executed for each of three
object types within the convex class (a rectangle,
a cylinder, and a triangular prism). In each trial,
an unknown object was presented and one of the
4 grasp controllers was executed until convergence
at which point the grasp configuration was evalu-
ated. Figure 7(a) presents the distribution of grasp
scores obtained. Then, a reinforcement learning al-
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Figure 7: Distribution of grasp scores, over 100 trials;
(a) baseline performance using native controllers, (b) im-
pact of policy for resource allocation based on patterns of
membership in the empirical models of error dynamics.

gorithm was used to construct a policy for allocat-
ing contact resources. Figure 7(b) shows that the
mean grasp performance improves and the variance



in performance decreases as result of learning. In
the process of grasping, often the type of object was
determined, although this was not the goal of the
control process. Similar results were observed when
we examined performance on each object. It should
be possible to generalize this approach to non-convex
objects as well, although we have not yet attempted
to do so.

4.8 LOCOMOTE Schemata

Multi-legged locomotion platforms present similar
challenges to those of multi-fingered robot hands
when it comes to coordinated motion planning. Co-
ordinated limb movements must serve both stabil-
ity and mobility concerns by sequencing the move-
ment of several independent kinematic chains. There
are active communities considering gait synthesis for
walking platforms and now for manipulation as well,
but so far there has not emerged a unified framework
for solving these problems.

Our walking platform, “Thing,” is a small, twelve
degree of freedom, four legged walking robot built
to explore whether ideas designed for quasistatic fin-
ger gaits could be applied to quasistatic locomotion
gaits. Initially, it was given three types of motor ac-
tions ¢ € ®, in the control basis; force, position, and
kinematic conditioning controllers. Thing learned
simple sensorimotor policies first and then uses them
as abstract actions in a behavioral hierarchy. These
policies are represented as nondeterministic Finite
State Automata (FSA) where actions are confined
to belong to well-defined subsets of the control basis
that are provably consistent with policy specifica-
tions.

The first policy Thing learned was how to ro-
tate in place(Huber and Grupen, 1997). By impos-
ing a resource model on the actions available to our
quadruped, the size of the functional state space
was limited 23 states with 1885 possible concur-
rent control actions from each of these states. A
quasistatic stability constraint is implemented in the
DEDS specification as a logical disjunction over four
controllers that stabilize different tripod stances and
certifies that at least one must be near equilibrium
at all times. Together with another kinematic feasi-
bility constraint, the number of relevant states was
reduced to just 32 with an average of 157 available
concurrent control options available from each state.
These constraints are expressed as logical conditions
on the pattern of equilibria in the active controllers.
Any states (or actions that produce future states)
that violate these constraints are disallowed. In ad-
dition to producing performance guarantees, con-
straint satisfaction has a dramatic influence on the
complexity of learning.

Our walking platform acquired policies for rotation
gaits in the structured search space described above

in as little as 11 minutes, on-line, in a single trial
using a standard Q-learning algorithm. The final
policy appears in Figure 8.
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Figure 8: A Walking Gait - the policy responds to a
variety of sensorimotor contexts. The central cycle has
transition probabilities of greater that 95% in the training
context.

Knowledge of the motor synergies involved in
rotating under varying conditions significantly im-
proved the acquisition of other behavior. For in-
stance, Thing learned to translate in roughly half the
time given the prior rotate policy than it did without
it, and ultimately, the average amount of translation
per action was roughly double as well (Huber, 2001).
We believe that this phenomenon is consistent with
the kind of staged, sequential development that hu-
man neonates exhibit as observed by developmental
psychologists like Piaget.

Once schemata for rotating and translating are in
place, navigating in a cluttered environment can be
formulated as a policy for deciding when to translate
and when to rotate in response to observed obsta-
cles. We demonstrated that Thing can find a path
from point A to point B with no prior knowledge
of the intervening obstacles using a forward-looking
IR proximity detector to observe obstacles enroute
and map them into an evolving configuration space.
The locomotion plan follows a streamline in a har-



monic function path controller by selecting one of
two temporally extended actions (ROTATE-GAIT, or
TRANSLATE-GAIT) in a 4 state finite state automa-
ton. The state is derived from a 2 bit ”interaction-
based” state descriptor. One bit describes the con-
vergence status of the ROTATE-GAIT action, and
the other describes the convergence status of the
TRANSLATE-GAIT action with respect to the current
path plan. The control knowledge represented in
these two actions and this FSA are adequate for
finding paths in any cluttered world provided that
a path exists at the resolution of our configuration
space map.

Policies built using this framework for perceiving
state and executing control are very robust to chang-
ing conditions. Essentially the same policy is used
when our 4-fingered Utah/MIT hand rotates a cylin-
der and screws in a light bulbs. A recent extension
(Huber and Grupen, 2002),

4.4 ACQUIRE Schemata

ACQUIRE T i

— Resource
> Manager

REACH

LOCALIZE GRASP ‘
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— Resource p— Resource — Resource
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Figure 9: ACQUIRE - A Physical Schema for acquiring
objects distributed about the environment.

By combining instances of the schemata already
presented, more interesting behavior can be con-
structed. In this example, we use a special form
of the LOCOMOTE schema called REACH - it can
thought of as an appropriately parameterized LOCO-
MOTE that employs degrees of freedom in the arm
to move fingers and tactile sensors to the object
sought. Schemata for LOCALIZE, REACH, and GRASP
are much more appealing constructs for program-
ming ACQUIRE because they each encode a great deal
of control knowledge and each will take actions based
on the dynamics of the run-time environment to
achieve their respective goals. The ACQUIRE schema
may exploit state and context returned in each of
the components to manage resources in the compos-
ite controller more effectively.

5. Conclusions

5.1 Software Infrastructure

There appears to be a great deal of similar structure
common to the schemata we have presented. For
instance, each of these examples uses local memory
to estimate the control context from a time series of
observations and a learning component to associate
the categories observed in each domain into control
decisions regarding actions and resources. The im-
plementation of a truly autonomous developing robot
will require that much attention is paid to a recur-
sive and self organizing software structure. While
processes and structure in these hypothetical soft-
ware structures are shared, the control knowledge
and policies for resource management will be spe-
cific to the domain of interaction represented by the
schema.

5.2  Relativized Actions

The problem is that policies are acquired over time
by addressing tasks in particular control contexts.
Given enough experience, policies can approach op-
timal in the training set, but we would like to achieve
a degree of abstraction that extends this policy to an
entire class of behavior without having to train the
agent uniformly over the entire domain. To scale
well, lifelong learning tasks must use related expe-
rience to inform exploration during future learning
tasks.

The control basis generates closed-loop controllers
by sampling combinations of { ®|¢; € (F x 2% x
2¢%) }, where F is the set of value functions both
native and derived, €2 is the stream of observable
events (“sensor outputs”) generated during training,
and () is the “effector” designation. When a policy
is acquired, it is expressed in the form of a sequence
of control configurations drawn from this set.

Physical schemata focus specifically on the mix-
ture and sequence of objectives F' that collectively
solve a particular class of tasks. From this view, each
instance of a controller is a schema that has been
decorated with sensor and effector resources to solve
a particular element of the class. Physical Schemata
form a declarative basis for this behavioral class that
can be learned from every training episode drawn
from this class.

5.3  Homomorphism and Reflection

Our mechanism for generalization generates oppor-
tunities to apply a policy developed in one context
to another (related) context. We take our lead here,
from techniques originally developed for finding
minimal Markov models (Dean and Givan, 1997,
Ravindran and Barto, 2001). These graph re-



duction techniques involve identifying topo-
logical structure in an MDP that can ex-
ploit  symmetry (Popplestone and Grupen, 2000,
Ravindran and Barto, 2001) to reduce the complex-
ity of the model. We observe that the generalization
of an existing policy can be defined by groups of
homomorphisms. These transformations are used
to hypothesize symmetries in the MDP and create
reflections of existing policies in other (related) do-
mains. For example, homomorphic transformations
can involve permuting the resources employed in
an otherwise constant control policy. Such a trans-
formation preserves the sequence and combination
of objectives underlying the task but executes the
schema using a different suite of sensor and motor
resources.

5.4 Human-Robot Interaction (HRI)

Parents have a great deal of input into the devel-
opmental growth of their children. Interfaces will
be required to accomplish this for robot systems as
well. For example, we can try to explain teleoper-
ator inputs by searching for elements of the con-
trol basis that produce similar actions in this con-
text. Further exploration can be focused exclusively
on such plausible controllers to generate an internal
representation of the teleoperated task expressed in
terms of value functions native to the device. Per-
haps constraints expressed in the DEDS-based task
description and/or the resource model can be used
to “teach” the system how to explain new concepts
incrementally as in classical approaches to shaping
and maturation.

Additional research in this area is likely to yield
techniques for developing physical schema derived
from teleoperator input that express the policy using
native value functions. A generalization to such an
approach can be used to negotiate a shared mean-
ing between robots, humans, and the adaptive in-
terface, each of which employ customized internal
models tuned to their particular task that ultimately
describe the same physical phenomena.
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