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Abstract

What dynamics can enable a robot to

continuously develop new visual know-how?

We present a �rst experimental investigation

where an AIBO robot develops visual com-

petences from scratch driven only by internal

motivations. The motivational principles used

by the robot are independent of any particular

task. As a consequence, they can constitute

the basis for a general approach to sensory-

motor development.

1. Introduction

One of the challenges for research in epigenetic

robotics is to �nd general principles to design robots

capable to extend their sensory-motor competences

during their lifetime. These robots usually start

with crude capabilities for perception and action

and try to bootstrap new know-how based on their

experience. Several researchers have investigated

how some particular competence can emerge using

a bottom-up mechanism (e.g. (Andry et al., 2001,

Metta and Fitzpatrick, 2002, Tani, 2002)). A pos-

sible approach consists in de�ning a reward func-

tion adapted to the behavior that the robot has

to develop. Several state-of-the-art techniques in

machine learning show how a robot can learn how

to behave in order to maximize such a function

(Kaelbling et al., 1996). But in most cases, this re-

ward function is speci�c to the task the robot has

to learn. It means that for each new behavior to be

developed, the designer has to de�ne a new reward

function. In this paper we discuss the design of mo-

tivational principles that would be independent of a

particular task and that could be used, as a conse-

quence, for any sensory-motor development. Despite

its relative simplicity, it can be argued that the archi-

tecture we present can overcome several limitations

of current epigenetic arti�cial systems (as recently

reviewed by (Zlatev, 2002)).

The paper focuses on a mechanism for bootstrap-

ping a simple active vision system. In the �rst

months of their life, babies develop sensory-motor

competences almost from scratch to localize lights

sources, pay attention to movement and track mov-

ing objects (Smith et al., 1998). The robotic model

presented in this paper does not attempt to model

precisely this developmental pathway but to illus-

trate how general motivational principles can drive

the bootstrapping of such competences. The rest of

the paper presents our developmental architecture

and experimental results on its use for developing

visual know-how.

2. An architecture for self-developing

robots

2.1 Presentation of the problem

The AIBO ERS-210, Sony's four-legged robot, is

equipped with a CCD camera and can turn its head

in the pan and tilt directions (a third degree of lib-

erty exists but is not exploited in this experiment).

We have deliberately simpli�ed the vision system to

an extreme point. The robot extracts from each im-

age it analyses the point of maximum intensity. The

visual system perceives only the coordinates of this

maximum (idpan; idtilt) expressed relative to the im-

age center. The robot also perceives the position of

its head in a pan-tilt coordinates system (hpan; htilt).

At each time step its perception can be summarized

by a vector of dimension four.

S(t) =

��������
idpan(t)

idtilt(t)

hpan(t)

htilt(t)

��������
(1)

The robot moves its head by sending motor com-

mands (mdpan;mdtilt). So the sensory- motor vector

SM (t) at each time step is of dimension 6.

M (t) =

����mdpan(t)

mdtilt(t)

���� (2)

SM (t) =
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mdpan(t)

mdtilt(t)

idpan(t)

idtilt(t)

hpan(t)

htilt(t)
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(3)



Initially the robot does not know anything about

its sensory-motor device. Can the robot develop a

simple attention behavior in which it intentionally

�xes its gaze on a certain number of things in its en-

vironment? To do this, it must discover the structure

of several couplings in its sensory-motor device.

� How does a relative command (mdpan;mdtilt) af-

fects the next position of (hpan; htilt) of the head?

This sensory-motor coupling is constrained by the

head limit positions resulting of the structure of

the robot's body.

� How does a relative command (mdpan;mdtilt) af-

fects the movement of the visual �eld in par-

ticular the position of (idpan; idtilt).This sensory-

motor coupling is again constrained by the

robot's body and also by the structure of what

happens in the environment.

In short, the robot must learn to perceive its en-

vironment by moving its head in the right manner.

The developmental mechanism that we describe is

only driven by a set of internal motivational vari-

ables. We claim that the dynamics resulting from

these motivational variables are suÆcient to lead the

robot into a continuous increase of its sensory-motor

mastery.

2.2 Overview of the architecture

The architecture of a self-developing device can be

schematized by the interaction of three processes

(Figure 1).

� TheMotivation process is responsible for the eval-

uation of a given sensory-motor situation. A set

ofmotivational variables Motiv(t) = fmoti(t)g is

de�ned and associated with a set of reward func-

tions R. A situation is desirable if it results in

important rewards. An important feature of self-

developing devices is the use of task-independent

motivation variables. These variables typically

result of internal computations based on the be-

havior of the two other processes (Prediction and

Actuation). This process is used to evaluate an-

ticipated situations and plays a role in the actu-

ation process.

� The Prediction process tries to predict the evo-

lution of the sensory-motor trajectories. It uses

three prediction devices dedicated respectively to

the prediction of M (t), S(t) and Motiv(t). All

the knowledge the device has about its environ-

ment, its "awareness", is resulting from these pre-

diction devices.

� Eventually, the Actuation process decides based

on the state of the two other modules which ac-

tion should be performed in order to obtain re-

wards. This process goes through four phases :

(a) Generation of possible motor commands, (b)

Anticipation of the corresponding sensory-motor

trajectories (using the Prediction process), (c)

Evaluation of each simulated trajectories of the

corresponding expected rewards (using the Mo-

tivation process) and eventually (d) Selection of

the best motor commands.
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Figure 1: The architecture of a self-developing device

The three processes evolve based on the experi-

ences of the agent. What the agent is aware of, what

it is motivated for and the way it acts on its environ-

ment changes over time as the result of its develop-

mental trajectory. The rest of the section goes into

more details about each of these processes.

2.3 Motivation

The motivation process is based on a set of motiva-

tional variables moti. We have tried to design a set

of motivations that are independent of the particu-

lar sensory-motor device that the system explores.

Being rather abstract they can be used to drive the

mastery of any sensory-motor device. In order to cre-

ate the condition for an open-ended sensory-motor

exploration, we have chosen variables which value

depends on the developmental history of the robot.

This means that the way to receive rewards for such

motivations is constantly changing as the robot de-

velops. Here are the three kind of variables used by

the system described in this paper.

� Predictability: Can the robot predict the cur-

rent sensory context S(t) based on the previous

sensory-motor context SM (t � 1)? The robot

is equipped with a prediction device that tries

to learn sensory-motor trajectory. If e(SM (t �

1); S(t)) is the current error for predicting S(t),

the predictability P (t) can be de�ned as :

P (t) = 1� e(SM (t � 1); S(t)) (4)



� Familiarity: Is the sensory-motor transition that

leads from SM (t�1) to S(t) a common pathway

? The robot is equipped with a device evaluating

the frequency of the sensory-motor transition for

a recent period t � T . If fT (SM (t � 1); S(t)) is

the current frequency of the transition that leads

to S(t), the familiarity F (t) can be de�ned as :

F (t) = fT (SM (t � 1); S(t)) (5)

� Stability: Is the current sensory variable si of

S(t) far from its average value? The robot tracks

the average value < si >T for the recent period

t� T . So for each sensory variable si the stabili-

tity �i(t) can be de�ned as :

�i(t) = 1�
p
(si� < si >T )2 (6)

Predictability and Familiarity share some similar-

ities with internal variables experimented by other

researchers like "novelty" (Huang and Weng, 2002)

or "curiosity" (Kulakov and Stojanov, 2002). More

generally the study of such kind of general basic

motivation can be traced back to Piaget's research

(Piaget, 1937).

For our problem, we have motivational vector of

dimension 6.

Motiv(t) =

������������

P (t)

F (t)

�idpan(t)

�idtilt(t)

�hpan(t)

�htilt(t)

������������
(7)

Each motivational variable v is associated with a

reward function r(v; t). It takes the following general

form:

r(v; t) = ft(v(t); v(t � 1); v(t� 2); ::) (8)

In the current implementation two kinds of func-

tions are used.

� The robot is rewarded when it maximizes the

value v of the stability motivations. This is

similar with the way motivational variables are

generally treated (e.g homeostatic models in

(Breazeal, 2002)).

rmax(v; t) = v(t) (9)

� But for predictability and familiarity, the robot

tries to experience increases of the value of the

variable instead of maximizing it. This means

it does not look for predictable or familiar sit-

uations. It seeks "learning" experiences (pre-

dictability) and "discovery" situations (familiar-

ity). As we will see, this small di�erence plays an

important role for the dynamics of the system.

rinc(v; t) =

(
(v(t) � v(t � 1)) : v(t) > v(t � 1)

0 : v(t � 1) � v(t)

(10)

A parameter �i is associated to each motivational

variable. It enables to specify the relative weight of

each variable for determining the overall reward of

vector Motiv(t) = fmoti(t)g.

R(Motiv(t)) =
X
moti

�i:r(moti; t) (11)

2.4 Prediction

The awareness of the robot comes from its ability

to predict sensory-motor trajectories. Recogniz-

ing a situation is recognizing a sensory-motor

pathway. This standpoint follows the lines of

current research that considers that perception

emerges from motor actions (Gibson, 1986,

Varela et al., 1991, O�Regan and Noe, 2001).

This view, also known as active perception, is

now shared by a growing number of robotic

engineers (e.g. (Marocco and Floreano, 2002,

Metta and Fitzpatrick, 2002)).

We can considerer that at a given time t, a

robot experiences a particular sensory-motor con-

text, that can be summarized in vector SM (t) of

dimension 6. The system uses three prediction de-

vices: �m;�s;�motiv. The three devices take the

current situation SM (t) as an input and try to pre-

dict respectively the future motor situationM (t+1),

the future sensory situation S(t + 1) and the future

state of the motivation vector Motiv(t + 1).

At each time step , the three devices learn the

correct prediction by comparing the current situation

with the previous one.

�m(SM (t � 1))!M (t) (12)

�s(SM (t � 1))! S(t) (13)

�motiv(SM (t � 1))!Motiv(t) (14)

The landscape of the motivation that �mot must

learn is dependent on the performance of the two

other devices. P (t) is determined by the error rate

of �s, and the other motivational variables change

according to the action selection process which in

turn results form the prediction of �m and �s (see

below). As a consequence, �mot must adapt contin-

uously during the bootstrapping process.

For this study we tried two kinds of implementa-

tion for the prediction devices:

� A recurrent Elman neural network with a hid-

den layer / context layer of 12 input nodes



(Elman, 1990). Because this network is recur-

rent, it predicts its output based on the value of

the sensory-motor vectors several time steps be-

fore t.

� A prototype-based prediction system that learns

prototypic transitions and extrapolates the result

for unknown regions. It takes the form of a set of

vectors associating a static sensory-motor context

SM (t�1) with the predicted vector (M (t),S(t) or

Motiv(t)). New prototypes are regularly learned

in order to cover most of the sensory- motor

space. The prediction is made by combining the

results of the k closest prototypes. This predic-

tion system is faster and more adaptive than the

Elman network, but may be less eÆcient for com-

plex sensory-motor trajectories.

The performances of the prediction devices are

crucial for the system, but the architecture does not

assume anything about the kind of devices that need

to be used. As a consequence, any state-of-the-art

techniques can be tried. For the problem we tried

to tackle, the dynamics were roughly the same for

the two kinds of prediction devices. The results pre-

sented in this paper are obtained with the prototype-

based prediction system.

2.5 Actuation

The actuation process anticipates the possible evo-

lutions of the sensory-motor trajectories and tries to

choose the motor commands that should lead to the

maximumreward. Several techniques taken from the

reinforcement learning literature can be used to solve

these kinds of problems(Kaelbling et al., 1996). In

our system, the process can be split into four phases:

� Generation : The system constructs a set of pos-

sible motor commands fmig. This phase can be

trivial for simple cases but may require special

attention when dealing with complex actuators.

� Anticipation : The system simulates the possi-

ble sensory-motor evolution fSMmig over T time

steps using the prediction devices in a recurrent

manner. The system combines the result of both

�m and �s to predict future sensory-motor sit-

uations and uses �motiv to predict the evolution

of the motivation vector Motiv(t).

� Evaluation : For each evolution fSMmig an ex-

pected reward Rmi is computed as the sum of all

the future expected rewards.

Rmi(t) =

t+TX
j=t

R(Motiv(j)) (15)

� Selection : The motor command fmig corre-

sponding to the highest Rmi is chosen.

3. Isolation of the dynamics in simu-

lation

3.1 Simulated environment

The developmental dynamics of such an architecture

can be rather complex. In order to better under-

stand the role of each internal motivation we have

conducted a series of experiments in a simple sim-

ulated environment. We simulate the presence of a

light performing a sinusoidal movement in the envi-

ronment.

lightpan(t) = K � sin(p(t)) (16)

lighttilt(t) = L � sin(p(t) + �) (17)

p(t+ 1) = p(t) + Æ (18)

The oscillations in the tilt domain have a smaller

amplitude than in the pan domain (L < K).

The robot perceives the relative position of the

light compared to its own position.

idpan(t) = lightpan(t)� hpan(t) (19)

idtilt(t) = lighttilt(t)� htilt(t) (20)

At each time step it decides the most appropriate

action fmdpan;mdtiltg to perform. The e�ect of this

action is simulated using the following simple rules :

gpan(t + 1) = mdpan(t) + hpan(t) (21)

gtilt(t + 1) = mdtilt(t) + htilt(t) (22)

The constraints on the robot's body are simulated

by imposing limits on the possible head positions:

maxpan;minpan;maxtilt;mintilt.

hpan(t+1) =

8><
>:
maxpan : gpan(t + 1) > maxpan

minpan : gpan(t + 1) < minpan

gpan(t+ 1) : otherwise

(23)

A similar equation is de�ned for htilt(t + 1).

3.2 Increase in predictability

For this experiment, we assume that the robot is

only driven by its predictability motivation. It tries

to experience increases in its predictability level P (t)

which means that it seeks for "learning" situations.

As it learns, sensory-motor trajectories that used to

give rewards tend to be less interesting. This dynam-

ics push robot towards an open-ended dynamics of

exploration.

Figure 2 shows the evolution of the average pre-

dictability level P (t). It quickly reaches a high value.

This shows that the robot has learned the overall ef-

fect of its movement on the light position and on the



position of its own head. As the robot tries to expe-

rience increases in predictability and not simply to

maximize it, small oscillations can be seen near the

maximum value. They correspond to new sensory-

motor trajectories that the robot explores.
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Figure 2: Evolution of the average of the predictability

level P (t)

Figure 3 shows the evolution of the pan position of

the head during 1000 time steps. The corresponding

evolution of lightpan is also indicated. A very simi-

lar curve can be plotted for the tilt dimension. The

movement is rather complex as the robot gets away

from predictable sensory-motor trajectories and tries

to explore new ones. The evolution of the average

hpan position shows that the system progressively

explores the amplitude of the possible pan positions

by oscillating around the zero position.
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Figure 3: Evolution of the hpan position (and its average)

following the increase predictability rule. The evolution

of lightpan is also indicated

3.3 Increase in familiarity

For this experiment, the robot is driven only by its fa-

miliarity motivation. It tries to experience increases

in its familiarity level F (t). In a similar way than

for predictability, unfamiliar situations tend to be-

come familiar after a while and, as a consequence,

less rewarding. This dynamics drives the robots into

a continuous exploration behavior.

Figure 4 shows the evolution of the average famil-

iarity level F (t). The robot manages progressively to

reach a very high level of familiarity. Similarly to the

evolution of the previous experiment, we see oscilla-

tions due to the pressure of experiencing increases

in familiarity. Each reduction of the familiarity level

corresponds to the exploration of new parts of the

sensory- motor space.
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Figure 4: Evolution of the average of the familiarity level

F (t)

Figure 5 shows the evolution of the pan position

of the head during 1000 time steps. The movement

looks a bit like the one obtained in the previous ex-

periment but some di�erences can be noticed. The

average position curve shows the robot �rst explored

position corresponding mostly to high pan values

then switched progressively to low pan values. This

switch, that seems to occur independently of the os-

cillation of the light, did not appear as clearly as

in the experiment on predictability. The familiarity

motivation pushes the robot to explore trajectories

in the sensory- motor space independently of how

well it masters them. At the end of the experiment,

the system has covered the entire set of possible pan

positions. The familiarity and predictability moti-

vations can be seen as two complementary ways to

explore a sensory-motor device.
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Figure 5: Evolution of the hpan position (and its average)

following the increase familiarity rule. The evolution of

lightpan is also indicated

3.4 Maximization of sensory stability

The last four motivational variables concern the sta-

bility of each component of the sensory vector S(t).

They are all associated with the maximize reward

function rmax.

3.4.1 Head stability

First we will consider the case where the stability

concerns the head position. It corresponds to the



variables �hpan(t) and �htilt(t). It means that the

robot seeks sensory-motor trajectories in which its

head position remains stable in time. Figure 6 shows

the evolution of average stability for an experiment

when the robot uses this reward system. In this con-

text the task is rather easy: the robot simply has

to discover that it has to stop moving its head in or-

der to obtain important rewards. Stability is reached

rapidly for both the pan and tilt direction.
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Stability(hpan)

Figure 6: Evolution of the average of the stability level

for the head position �hpan(t) and �htilt(t)

The evolution of �gure 7 shows that the head posi-

tion stabilizes around its initial position after a short

period of oscillation.
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Figure 7: Evolution of the hpan position following the

maximization stability rule for the head position. The

evolution of lightpan is also indicated

3.4.2 Light stability

We now consider the case where stability concerns

the relative position of the perceived light. The task

is in this case a bit more complex as the light is not

directly controlled by the robot. The robot has to

discover that it can act upon it by moving its head in

the appropriate directions. Figure 8 shows the evo-

lution of the average stability for an experiment with

this reward system. The robot manages to control

the stability of the light in the tilt domain faster than

in the pan domain probably because the movement

has a smaller amplitude in the tilt domain (L < K).

Figure 9 shows the evolution of the head position

during the same experiment. After a short time for

tuning, the robot develops a tracking behavior and

follows the light quite precisely. As the robot seeks
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Figure 8: Average evolution of the stability level for the

light relative position �idpan(t) and �idtilt(t)

for sensory stability, each movement of the light can

be seen as a perturbation that it learns to compen-

sate. The development of this visual know-how re-

sults directly from the e�ect of the environment on

the sensory-motor device.
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Figure 9: Evolution of the hpan position following the

maximization stability rule for the light relative position.

The evolution of lightpan is also indicated

With this series of experiments, we have a clearer

idea of the e�ect of each reward system on the

bootstrapping process. The two �rst motivations,

increase in predictability and familiarity, push the

robot to explore its sensory-motor device. The last

four ones, maximization of sensory stability, lead the

robot, on the one hand, to stop moving its head, and

on the other hand, to develop a tracking behavior.

4. Experiment on the robot

This last experiment is conducted on one AIBO ERS-

210. The software components are written in C++

using the publicly available OPEN-R SDK. The soft-

ware runs on board, and the data for the experiment

are directly written on the MemoryStick for later

analysis. In this experiment we are using a small

number of the degrees of freedom possessed by the

robot. Nevertheless, the fact that the architecture

can be used on a real robot shows that it is suÆ-

ciently light to perform on-line learning in real-time

on a modest computer and that it is suÆciently ro-

bust to cope with noise on both sensory data and

motor commands.

At each time step, the robot computes the point

of maximum light intensity in its visual �eld. The



relative position of this point provides the two in-

puts idpan(t) and idtilt(t). The robot measures its

own head position hpan(t) and htilt(t). Contrary to

the simulation, this measure is not completely accu-

rate. In the same way, due to di�erent mechanical

constraints, the relative movement resulting from the

action mdpan(t) and mdtilt(t) can be rather noisy.

The reward system used can potentially include

the six motivational variables previously studied. As

we mentioned, the relative weight of each variable of

the computation of the overall reward is determined

by the set of parameters �i. For this experiment,

we set these weights so that the robot developed the

know-how for paying attention to the di�erent light

patches present in its environment. This means it

should develop a tracking behavior but also an ex-

ploratory skill for not being stuck in front of a given

light. As head stability is to some extent counterpro-

ductive for such a goal, we decide that �hpan(t) and

�htilt(t) should not play a role for this experiment.

As a consequence, all the reward functions were as-

sociated with the same weight �i = k, except the

two controlling the head stability that received the

value �i = 01.

The experiments lasted 10 minutes. The robot was

placed in front of an uncontrolled oÆce setting. Fig-

ure 10 shows the evolution of the six motivational

variables. As expected the four variables associated

with the weight k obtained high values. The rela-

tive position of light reached rapidly a plateau, but

predictability and familiarity kept increasing. The

motivational variables for head stability oscillate at

a lower level.
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Figure 10: Evolution of six motivational variable for a 10

min experiment on the AIBO ERS-210

Figure 11 shows the evolution of head pan position

during the experiment as well as the position of the

perceived light. The robot seems to track the light,

but motivated for exploration, its position oscillates

1It is possible to design another system that would con-
trol these weights automatically according to some prede�ned

criteria. It all depends on the kind of general development
strategies one wishes to observe

around a local light maximum permitting the robot

to �nd another one.
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Figure 11: Evolution of the head pan position and of the

perceived light position

This behavior can be seen more clearly on �gure 12

which magni�es a detail in �gure 11. The pan posi-

tion increases to approach a local maximum, then os-

cillates around it for a while. At some point a larger

oscillation makes it discover a higher local maximum.

The robot switches back and forth several times be-

tween the two maxima and �nally continues its ex-

ploration towards higher pan values. This kind of

behavior is a typical result of the search of increase

in predictability and familiarity. The robot uses fa-

miliar and predictable contexts as bases for progres-

sively continuing its exploration.
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Figure 12: Magni�cation of a detail in �gure 11

Figure 13 shows the overall pan tilt trajectory for

the duration of the experiment. It appears that the

robot has concentrated its exploration on the right

part of the scene. It seemed to have highly explored

one particular area and progressively search for other

maxima in its immediate neighborhood. It result

from this exploration a kind of "map" of the posi-

tion of the local light maxima as shown on �gure

13. This representation does not exist as such for

the robot but is the result of the know-how it has

developed with its sensory-motor device. The robot

is not capable to perceive all these light positions at

the same time, but it is con�dent that they are there

because of its sensory-motor visual know-how. This

kind of visual awareness can be seen as a technical

illustration of what O'Regan and Noe call "the world

as an outside memory" and the "impression of seeing



everything" (O�Regan and Noe, 2001).
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Figure 13: Pan tilt trajectory during the experiment and

local light maxima identi�ed.

5. Conclusion

We have illustrated how a robot can develop visual

know-how driven by task-independent internal mo-

tivations. The experimental setup was deliberately

simple in order to illustrate the basic dynamics of

such a device. In further work, we will investigate

how far the same set of motivational principles can

account for an eÆcient exploration of other sensory-

motor devices. We hope that these investigations

will help us to de�ne the characteristics of a gen-

eral architecture that could account for open-ended

sensory-motor development.
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